DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B
نویسندگان
چکیده
Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity.
منابع مشابه
Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination.
tRNA restriction by anticodon nucleases underlies cellular stress responses and self-nonself discrimination in a wide range of taxa. Anticodon breakage inhibits protein synthesis, which, in turn, results in growth arrest or cell death. The eukaryal ribotoxin PaT secreted by Pichia acaciae inhibits growth of Saccharomyces cerevisiae via cleavage of tRNA(Gln(UUG)). We find that recombinant PaT in...
متن کاملInteractions between avian myeloblastosis reverse transcriptase and tRNATrp. Mapping of complexed tRNA with chemicals and nucleases.
The interactions between beef tRNATrp with avian myeloblastosis reverse transcriptase have been studied by statistical chemical modifications of phosphate (ethylnitrosourea) and cytidine (dimethyl sulfate) residues, as well as by digestion of complexed tRNA by Cobra venom nuclease and Neurospora crassa endonuclease. Results with nucleases and chemicals show that reverse transcriptase interacts ...
متن کاملRibosome binding of DNA analogs of tRNA requires base modifications and supports the "extended anticodon".
The efficiency of translation depends on correct tRNA-ribosome interactions. The ability of chemically synthesized yeast tRNA(Phe) anticodon domains to effectively inhibit the binding of native yeast tRNA(Phe) to poly(U)-programmed Escherichia coli 30S ribosomal subunits was dependent on a Mg(2+)-stabilized stem and an open anticodon loop, both facilitated by base modifications. Analysis of tRN...
متن کاملEvidence for DNA Cleavage Caused Directly by a transfer RNA-Targeting Toxin
The killer yeast species Pichiaacaciae produces a heteromeric killer protein, PaT, that causes DNA damage and arrests the cell cycle of sensitive Saccharomyces cerevisiae in the S phase. However, the mechanism by which DNA damage occurs remains elusive. A previous study has indicated that Orf2p, a subunit of PaT, specifically cleaves an anticodon loop of an S. cerevisiae transfer RNA (tRNA(Gln)...
متن کاملTTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants.
In Streptomyces coelicolor A3(2) and the related species Streptomyces lividans 66, aerial mycelium formation and antibiotic production are blocked by mutations in bldA, which specifies a tRNA(Leu)-like gene product which would recognize the UUA codon. Here we show that phenotypic expression of three disparate genes (carB, lacZ, and ampC) containing TTA codons depends strongly on bldA. Site-dire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016